Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.
نویسندگان
چکیده
Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.
منابع مشابه
Design and Synthesis of Diverse Functional Kinked Nanowire
2 Structures for Nanoelectronic Bioprobes 3 Lin Xu,†,‡,§ Zhe Jiang,‡,§ Quan Qing,‡,§ Liqiang Mai,† Qingjie Zhang,† and Charles M. Lieber*,†,‡,∥ 4 †WUT-Harvard Joint Nano Key Laboratory, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, 5 Wuhan University of Technology, Wuhan 430070, China 6 ‡Department of Chemistry and Chemical Biology and School of Engineering...
متن کاملThree-dimensional, flexible nanoscale field-effect transistors as localized bioprobes.
Nanoelectronic devices offer substantial potential for interrogating biological systems, although nearly all work has focused on planar device designs. We have overcome this limitation through synthetic integration of a nanoscale field-effect transistor (nanoFET) device at the tip of an acute-angle kinked silicon nanowire, where nanoscale connections are made by the arms of the kinked nanostruc...
متن کاملFree-standing kinked nanowire transistor probes Free-standing kinked nanowire transistor probes dimensions
Recording intracellular (IC) bioelectrical signals is central to understanding the fundamental behaviour of cells and cell networks in, for example, neural and cardiac systems1–4. The standard tool for IC recording, the patch-clamp micropipette5 is applied widely, yet remains limited in terms of reducing the tip size, the ability to reuse the pipette5 and ion exchange with the cytoplasm6. Recen...
متن کاملSingle crystalline kinked semiconductor nanowire superstructures
The ability to control and modulate the composition, doping, crystal structure and morphology of semiconductor nanowires during the synthesis process has allowed researchers to explore various applications of nanowires. However, despite advances in nanowire synthesis, progress towards the ab initio design and growth of hierarchical nanostructures has been limited. Here, we demonstrate a 'nanote...
متن کاملMultifunctional three-dimensional macroporous nanoelectronic networks for smart materials.
Seamless and minimally invasive integration of 3D electronic circuitry within host materials could enable the development of materials systems that are self-monitoring and allow for communication with external environments. Here, we report a general strategy for preparing ordered 3D interconnected and addressable macroporous nanoelectronic networks from ordered 2D nanowire nanoelectronic precur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2013